Annual General Meeting Special

The Annual General Meeting of the IABM will be held during the American Meteorological Society’s 34th Conference on Broadcast Meteorology being held 2 - 5 August 2005 at the Omni Shoreham Hotel in Washington, DC, USA.

The Broadcast conference will be held in conjunction with the 21st AMS Conference on Weather Forecasting and Analysis and the 17th AMS Conference on Numerical Weather Prediction, and there will be joint sessions between the three conferences. A short course focusing on various aspects of weather analysis and prediction will precede the conference on 1 August 2005 (separate registration is required for the short course).

A preliminary programme, registration, hotel, and general information can be found on the AMS website http://www.ametsoc.org/AMS. Contact conference chairwoman Jillene Wahl at tjvanhoy@swbell.net if you have any questions.

Building a library of weather broadcasts

All of us in the IABM do the same job; we present weather information to the public in as clear and efficient a manner as we possibly can. Though it might be the same basic task, there is an enormous variety apparent in the styles of weather presentation. Some of this is due to the graphic systems that we use; each system has its own strengths and weaknesses. Some of the differences are due to the different climates in which we operate. And finally, there are the differences between ourselves; the rich diversity of personalities that inhabit the world of broadcast meteorology.

The IABM would like to document this diversity through assembling a collection of video clips, and making it available to our members as a resource. You can send us a copy of your presentation in any format: Beta, Digibeta, DVC, plain old VHS or even on a DVD. The broadcast should be supplied copyright-free so that we can incorporate it into a collection of weather presentations to be made generally available. It should be an original broadcast, delivered in the language you normally use on-air; there is no need to provide translation or sub-titling. You can “add value” to the copy of your presentation by providing also details of the day and date of transmission, and some background information on the graphics system which you use.

We will make copies of the compilation of weather broadcasts available to all participating members at no more than the price to us of assembly and copying. Members who have not
Notice is hereby given that this will be held on Wednesday 3rd August 2005 at 1730 at the Omni Shoreham Hotel in Washington, DC, USA, during the American Meteorological Society’s 34th Conference on Broadcast Meteorology

Agenda

1. Apologies for absence, and notification of postal votes.

2. Minutes of the 8th Annual General meeting, held in Barcelona on Thursday 3rd June 2004.

3. Any matters arising.

5. Report of the outgoing Honorary Secretary, Bill Giles.

7. Election of Directors and Officers. (Nominations below)

8. Resolutions.

9. Any other business.

The following nominations have been received for the election of Directors and Officers:

Chairman
Tomas Molina

Secretary
John Teather

Treasurer
Gerald Fleming

Vice-Chairman
Claire Martin

Membership Secretary
Inge Niedek

Publications Secretary
Bill Giles

Ordinary Directors
Dieter Walch, Paul Gross

Non-Director Committee members
Gemma Puig, Tammy Garrison, Stephen Quoa, and
Minutes of the 10th Annual General Meeting of the International Association of Broadcast Meteorology will be held on Thursday 3rd June 2004 at the Conference Centre of Forum 2004 Barcelona at 1800.

Agenda

Apologies for absence, and notification of postal votes.

There were no prior apologies. The following members were in attendance: Allan Humphries, Abraham Mwale, Joel Chabata, John Kermond, Yoshikazu Idesako, Frank Tench, Arne Spekat, Bob Goldhammer, Johan Groth, Nesu Vilela, Gemma Puig, Francis Wilson, Evelyn Cusak, Ian Miller, Claire Martin, Tammy Garrison, Jan Pavlik, Steve Swienckowski, Dieter Walch, Ube Ulbrich, Jofre Janue, John Teather, Bill Giles, Gerald Fleming, Tomas Molina.

Minutes of the 9th Annual General meeting, held in Norwich on Tuesday 2nd September 2003

The Meeting received the minutes and their acceptance was proposed by John Kermond and seconded by Frank Tench.

Any matters arising.

Report of the outgoing Chairman, Gerald Fleming.

It is always a pleasure to address you at the time of the AGM, but a particular pleasure this year as we are gathered here in this magnificent conference building, having this morning launched the First World Conference on Broadcast Meteorology; an initiative we have planned for and worked towards over a number of years.

The plans to hold a Conference such as this sprang from our experiences in WMO in the year 2000 when we helped to bring together a one-day series of talks as part of the WMO50 celebrations, marking the golden jubilee of that august organisation. On that occasion we were aware that time was a limiting factor; and that the concept of gathering together a number of world experts to engage in dialogue with weather broadcasters was worthy of development.

We have had a number of false starts on the road to this conference; at one stage we planned to hold the Conference in Geneva in conjunction with both WMO and the AMS. The difficulty was always in trying to get the numbers to add up so that the conference could be financially achievable. That we are having it here in Barcelona is due primarily to the exceedingly generous financial support that we have obtained from the Forum organisation, in addition to the use of this impressive conference facility.

The past year, then, has been a very busy one for your committee as we have had much work to do to pull this conference together. There has been a series of organising meetings; initially just between ourselves but latterly with the staff of the Forum who have been incredibly helpful and hardworking – I cannot praise them enough. Much of the work was done through email, of course, but the experience reinforced for me just how important face-to-face contact still is in the context of organising any such venture.

Aside from the conference we also were in attendance at the Congress of WMO last summer. This event lasts for about 3 weeks and puts a considerable strain on our resources – both financial resources and time resources – in organising to have our seat filled. Having been granted a seat, however, it would be unthinkable not to fill it on such occasions, and for the last Congress we managed to cover most of the three-week period. Our connections with WMO have developed and matured over the years and we are now one of the first to be consulted when matters concerning weather broadcasting come up on their agenda. Individually, members of the IABM have become involved in WMO Expert Teams and in the organisation of training courses – such as the one held here earlier this week – so both organisations have, I feel, benefited from the collaboration.

There is also the day-to-day running of the Association; keeping the website up-to-date and issuing regular newsletters to maintain contact with our members. I would like to remind you that we welcome contributions to both website and newsletter from all the members; communication should be a two-way process and we are more than happy to facilitate you in circulating your thoughts and opinions to your peers.

This AGM marks my final act as Chairman; I have been privileged to serve a full three-year term. While being Chairman entails a degree of work and effort, the support of my colleagues on the committee has been

(Continued on page 4)
essential, and very much appreciated. We have had a lot of fun together over the years, mixing our work with good meals and even better bottles of wine. I would like to thank them all, especially John, Bill, Inge and Tomas who formed the core group who worked together on this Conference. We have seen a lot of each other over the past year, and there has been not a cross word spoken; a testament, I feel, to the sense of respect which we have for each other.

In conclusion I would like to wish you an enjoyable and informative Conference; to wish Tomas well as he takes over the Chair, and to thank all of you for participating in the life of the Association.

Report of the outgoing Honorary Secretary, John Teather.

The Secretary supported the report from the Chairman, and further to this reminded members of the great help and support afforded by WMO.

Report of the outgoing Treasurer, Gerald Fleming.

The Treasurer presented the accounts and answered any questions.

After the presentation of the Treasurers report the Chairman drew the attention of the membership to the fact that we had been joined by Dr John Zillman, recent past-president of WMO. The Chairman welcomed Dr Zillman, and stated that it was largely through his work and vision that the IABM had been admitted to observer status with WMO. This admission had, in turn, opened many doors for us and it is fair to say that without Dr Zillman and his encouragement the IABM would not have achieved half as much over the past ten years. The Chairman wished to take the opportunity to publicly thank Dr Zillman for all that he had done.

Election of Directors and Officers.

Chairman Tomas Molina
Secretary Bill Giles
Treasurer Gerald Fleming
Vice-Chairmen Claire Martin
Membership Secretary John Teather
Publications Secretary Inge Niedek, Dieter Walch, Gemma Puig, Tammy Garrison, Paul Gross
Ordinary Directors

The following officers were elected: Reviewing the election of committee members and officers, the Chairman noted that the outgoing committee essentially comprised the same group of people who had set up the IABM. We recognized that it was time now for change; for some of the “old hands” to gradually retreat into the background and for new energies and imaginations to come through. It was not that those with long experience were going to abandon the Association, but that an orderly evolution to a new generation would be for the best. He remarked with satisfaction that the election just concluded had begun that process in bringing some new faces to the fore, and he looked forward to working with the new committee under the direction of our new Chairman, Mr. Tomas Molina.

Resolutions.

There were no resolutions

Any other business.

There was no other business

IABM CORPORATE MEMBERS

AccuWeather
ask - Innovative Visualisierungslösungen GmbH
CNN (Cable News Network)
Meteorlogix
MeteoMedia
SAM (Servicios Audiovisuales de Meteorologia)
The Weather Co.
The Weather People Ltd
Weather One
WSI (Weather Services International)

The Association is grateful to these companies for their continuing support
A well trained forecaster, both in meteorology and broadcasting, is essential to get the weather message across to the general public. It is no use doing the best weather forecast in the history of the universe if that message is not delivered to the end user. To this end, in the United Kingdom, great store is attached to the meteorologist also having communication skills and nowhere is this more evident than on BBC television.

Over the past 50 years many of the met office forecasters have become very well known and respected but, coupled with investment and training, there has been a revolution in the meteorological fields that can be shown which exploded at the introduction of computer graphics in the 1980s and now, it could be argued, have imploded in recent months.

Prior to the 1970s the weather maps on television were largely hand drawn on sheets of Perspex, often live on air. In fact one broadcaster, Bill Bruce, was ambidextrous and his “party piece” was to draw a synoptic chart starting with his left hand and completing it with his right.

The first television weather broadcast on the BBC was right at the beginning of television in 1936 but it wasn’t until 1954 that a presenter was used in shot—a meteorological office forecaster who gave what was, in effect, a meteorological briefing. The weather broadcast, until very recently, consisted of two main components—firstly the meteorological charts, such as the Atlantic synoptic chart with fronts and isobars, and secondly weather maps with symbols. Prior to the 1970s the only weather symbols that were available were the international ones. These were not self explanatory (for instance a triangle denoted showers and a comma drizzle) and because most people didn’t know these codes they had to be explained to the viewer.

In the mid 1970s a series of self explanatory magnetic symbols were developed which were placed on a metal board, and then some semblance of movement of the weather was possible by changing the symbols on the map, but this was very cumbersome and could cause problems when the symbols fell off.

In the early 1980s electronic graphics were being introduced and the BBC wholeheartedly embraced this change. It meant that the presenter now had much more data and information to use in the broadcasts, and this changed the whole essence of the way the weather story was told.

Up until the introduction of computer graphics the broadcaster had to find ways of filling all the time allotted, but with the advent of a large number of meteorological fields now available, which were quickly and easily downloaded, the task had change to one of editing rather than filling.

Some broadcasters fell into the trap of trying to show too many maps whenever there was severe weather and only ended up in confusing the viewer, so a great deal more thought had to be put into what maps to show, and in what order, to get the weather message across.

During the 1980s and 1990s the use of computer graphics gradually evolved to such a stage that most of the viewing audience became very comfortable with them, and using a combination of synoptic charts, radar, forecast rainfall and symbols maps, the weather forecast was held in high regard and, in its heyday, had audiences in excess of 10 million at peak viewing.

But in 2005 a completely new approach was unveiled which appeared to dismiss almost all of the success that went before it. The new system is good but I feel it is not used to advantage. Gone, almost completely, are the Atlantic synoptic charts which many people in the United Kingdom felt comfortable with, and completely gone are the symbols only to be replaced by a map of the country showing brown for cloud and a lighter brown for sunshine. So on a completely sunny day, or indeed a completely cloudy day with no precipitation, the presenter stands in front of a blank map.

They have to spend such a great deal of the broadcast time explaining what we are looking at that no longer do we have forecasts regularly extending out to four days, but we have to be content with just 24 hours and perhaps a passing reference for the following day. So with no symbols it appears that the BBC Weather Centre has regressed to that of the early 1970s—a truly cyclic equation!
The Impact of Television Weather Presentation in Africa

By Samuel W. Muchemi Kenya Meteorological Department

This talk was Presented at the CBS TECHNICAL CONFERENCE ON PUBLIC WEATHER SERVICES in St Petersburg, Russian Federation, 21-22 February 2005

1. Introduction
Since the 1960's there was presentation of weather on television in many African countries in many varying forms. Television as a tool for disseminating weather and climate information by national meteorological services was adopted in many African countries during the last twenty years. Television was an option of choice because of its extensive graphic capabilities to represent different phenomena as well as its capacity to transmit sound. Television is a tool that allows dissemination of information in an entertaining, informative and educative manner. With many national weather services embracing TV weather presentation, there was resounding impact of this tool in many African countries. This write-up seeks to highlight the impact of this development as well as point out challenges that accompany the initiative.

2. A short History
Weather presentation in Africa started many about twenty years ago in a few countries. In the beginning, National Weather Services (NMSs) either made arrangements for meteorologists to present weather from the broadcasting houses or provided forecasts for the media to package and broadcast. However, it was in 1991 that the 11th WMO Congress established the Public Weather Services (PWS) Programme. Its implementation started in 1994 with many countries embracing it in the late 1990s. With the introduction of the PWS programme of WMO, many National Meteorological Services in Africa established PWS offices. The PWS offices served as a springboard for building capacities for national meteorological services to provide comprehensive weather services to the public. One important component of the initiative was the creation of television weather studios. Other capacities hitherto alien to meteorological services that were also created, were radio, Internet and desktop publishing systems. This catapulted national weather services to the world of media, a field far removed from weather science per se but essential to dissemination of weather and climate products to the public by meteorologists themselves.

Through the Voluntary Cooperation Programme (VCP) of the WMO, resources for realization of equipment and/or training were availed to Africa. The UK Met Office, NOAA, WMO and other donors made a huge contribution to the initiative. These countries included Kenya, Uganda, Ethiopia, Tanzania, Namibia, Niger, Senegal, the Seychelles, Nigeria and many others. In Africa, some countries benefited from African economic groupings to establish their PWS components such as did Djibouti whose studio equipment and training was funded by Intergovernmental Authority on Development (IGAD). The African Centre of Meteorological Applications for Development (ACMAD) solicited resources that saw many African countries establish their weather studios and their staff trained in production of weather programmes. Training on weather presentation took place in ACMAD, the Institute for Meteorological Training and Research (IMTR) in Nairobi and in own national meteorological services.

3. Impact of TV Weather Presentation in Africa
3.1 Increased Visibility
One important contribution of TV weather presentation to national meteorological services was the enhancement of their visibility. Before the advent of TV weather presentation in Africa, many meteorological services were little known. They were relegated to low stature administrative structures and were not sufficiently visible. Consequently, the public had no confidence in weather forecasts and warnings coming from them. Hence, otherwise preventable loss of life and property used to occur. They also attracted little state funding. This changed when NMSs could talk directly to masses through television. Suddenly, NMSs were rendered clear in the eyes of the public, conspicuous and distinguishable as institutions playing an important role and no longer concealed. This had the effect of many users approaching meteorological services requesting for specialized services.

In the Kenya Meteorological Service, for example, television stations were competing for packaged weather broadcasts, the agricultural, livestock, energy, filming, insurance, water and disaster management sectors initiated or increased their requests for services and products. The public also saw a new source of information for weather-related activities. Hence there was increased demand and usage of weather information.

3.2 Improved relations with the Media
The introduction of weather studios also increased the interaction between the media and climate scientists. It resulted in the media being invited to press conferences, media briefings and to workshops and seminars where a healthy relationship between the media and meteorologists started to develop. In the past the meteorologist treated the journalist with suspicion and the journalist, not understanding the tools of weather forecasters treated the forecasters with little respect. The effect of the interaction meant increased reportage of weather forecasts and weather stories in the print and electronic media. This was to culminate in formation of networks such as the Network of Climate Journalists for the Greater Horn of Africa (NECJOGHA), coordinated from Uganda. Similarly there are national chapters of this regional network such as the Kenya Network of Journalists and Meteorologists (KENJOM). Through these networks, there are initiatives to encourage young journalists to take interest in reporting climate issues such as climate change as well as educate the public on concepts such as El Nino etc. It has also provided a forum for climate scientists and media players to learn from each other. For instance meteorologists have been trained by journalists on packaging of weather information for use by journalists. They have for example learned how to format a press release in a manner that would make it unlikely for information it carries to be distorted by journalists during editing. The journalists have in turn learned meanings of certain meteorological terminologies such as basic concepts of meteorology for more accurate reporting.

(Continued on page 7)
3.3 Weather Studios as Training Facilities for the Public

Media training institutions recognized PWS studios as facilities to which they could take their students for industrial attachments. This resulted not only in benefiting the students themselves, but also the meteorologists who learnt from the students added skills in production of TV programmes particularly in video shooting, script writing, editing etc. This resulted in production of weather documentaries that were in turn used in showing to visiting parties of school children, which contributed to public education.

3.4 Contribution to Disaster Management

Another area that has grown as a result of TV weather broadcasts is the disaster management area. Relationship with the media created a faster means of getting weather warnings out more rapidly to the public and policy makers. Government institutions charged with responsibilities of ensuring public safety could no longer blame meteorological services when they failed to respond to warnings sufficiently. The public would be witness to the fact that warnings were issued on time. There are several examples of the effect this has had in the severity to which populations have been affected by hazardous weather. The drought of 1984 caused many deaths and displacement of people in the Greater Horn of Africa. However, the 2000 drought, which was even more severe in intensity, affected far less people and caused few deaths. This was partly because there was increased dissemination of warnings, much of which happened through television.

3.5 Sensitization of the Public to Available Services

Television weather presentation in Africa served to quickly and cost-effectively sensitize the public and policy makers on the services available in their national meteorological services and the importance of factoring climate predictions to all sectors of the economy. This in turn enabled most meteorological services to attract more government funding and support. This will eventually result in better services to the nations by their respective NMSs.

3.6 Provision of Ground for Growth of Related Initiatives

Establishment of weather studios created a breed of media meteorologists.

This provided ground for growth of related initiatives. In Africa, it was the concept of media meteorologists that resulted in the ACIMAD conceptualizing the Radio Internet (RANET) Project that seeks to employ inexpensive modern technologies to getting weather and climate information to rural communities in their local languages. Through this initiative, it is possible for remote villages situated in areas without main grid electricity to receive weather bulletins on computers without traditional Internet connectivity. This is a powerful tool that makes it possible to transmit information rapidly and to tailor it to specific needs of a community.

3.7 General Development of Communication Skills in NMSs

The advent of television weather presentation impacted on the presenters themselves as well as on other officers whose duties included communicating information to the public and the media. Due to the response from the public on the weather presentations, it was realized that meteorologists had been using terminologies that were incomprehensible to the viewers. Effort was made to simplify the language and to void it of jargon. This practice permeated to all modes of communication included the printed material.

3.8 Contribution to Development

The sum total effect of improvement of weather forecast dissemination through utilization of television contributed to recognition of the fact that weather and climate should be factored into almost all sectors of the economy and even in dealing with health issues. This improved allocation of resources more efficiently for purposes of mitigating effects of expected extreme weather and taking advantage of opportunities offered by suitable weather. The full impact of this way of doing business contributed to reduction of loss of life during the many instances when drought was experienced. There were instances where authorities charged with storm water drainage in cities and in low-lying inhabited areas consulted NMSs for advice on what to do before a rainy season. Environmentalists too depended much on the credible presentations to plan their activities such as tree planting. While it is difficult to attach an exact dollar value of this impact, it is clear that it is significant and exceeds the costs of establishment of television weather presentation.

4. Challenges

4.1 The Internet

There is a general shift of policy in many African countries to remove NMSs from mainstream civil service and to make them semi-autonomous government agencies that enjoy a healthy amount of autonomy. This is meant to cause more rapid development of the services without heavy central government controls on areas such as procurement of instruments and other items, hiring of staff, determination of personal emoluments etc. This in turn requires that the NMSs generate revenue. This has necessitated sale of packaged weather bulletins to broadcast houses. However, broadcasting houses have found out that they could freely get weather forecasts on the web, their accuracy and dependability notwithstanding. Hence, the greatest challenge to television weather presentation today is the Internet. This has challenged the status of NMSs as the official single source of information. It has also resulted in the public receiving varying weather forecasts. This is particularly serious regarding daily weather forecasts. However, seasonal climate outlooks are not affected by this development since they are not overly availed on the web. This is important since the long-range forecasts are very useful in preparation for eminent threats from floods or drought.

4.2 Resources

Television weather studios in some countries have also had the challenge of operating under tight budgets with inadequate funds to replace equipment. This has resulted in TV weather blackouts at times. They are, however short-lived as public demand ensures that remedial action is taken quickly.

5. Conclusion

Television weather presentation in Africa has achieved positive results in enabling NMSs render comprehensive service to the public. The initiative has fuelled improvement of collaboration between meteorologists and the media, which has enhanced rate and accuracy of disseminating weather stories and issuance of warnings. There has been a definite contribution to the effort of preventing loss of life and protection of property. This WMO initiative is a success that should be strengthened.
One year in the chair. It has been a busy year for me. When I went to my news director and told him that I had been elected as the new chairman of IABM, he asked me about the “real time involvement” of this chair. I told him that “only a couple of meetings a year” but I have to say that it has been a great experience but also a great number of meetings and texts and e-mails writing.

In this year I have realized that there is a big need of hearing the voice of the weather broadcasters around the world. From government bodies, to meteorological societies, and scientific committees, many of them have realized that our experience as a “weather science tellers” to broad audiences may be a good help to bring other difficult topics to the media.

You know that in many European countries, and in the USA, there is a great concern about the “public understanding of science” and especially in southern Europe, about the social economical return of the investment in science. Meteorology, weather forecast and climate research, are some of the best options to let people understand about the importance of science, research and innovation.

We can also bring to multidisciplinary, but mainly university Scientistics, groups, the different view of a media person with scientific background.

This has been my case this year: as a chairman of IABM, I have been invited to participate in several commissions, and technical groups to work in the whole idea of the public understanding of science, and it has been an excellent experience. I know that some of you are involved in similar projects, and I encourage all of you to do so if you have the chance to participate in similar projects.

As you have read in this UP FRONT, we continue to work with the 2007, and the Monterrey Forum Universal of Cultures in our wish list. We are on the final list of projects to be considered to be part of the event. The big success of our Barcelona Congress is our best chance to go for the second one.

You have also read that we are working again with the accreditation procedure for broadcast meteorologist. You can read in this issue some of the requirements for the candidates and the overall philosophy of the procedure. We have realized that every country has its own cultural aspects that have to be taken into account, and this has to be done by local people.

An other important issue is to relay in meteorological societies and real weather broadcasters to judge on the video submitted by the candidate. An accreditation has to be a professional tool for broadcast meteorologist that shows his or her aims for continuous professional developing and is committed to use official information for weather watches and warnings.

One last thing to highlight from this year on the chair is the economic matters. You know that we are modest organization that is run on our annual fees. We are trying to find other sources of funding, but we still need everybody’s contribution to bring this UP FRONT to your homes.

In our next AGM in Washington we will have the chance of meeting personally, but if you need anything from this chair or this board, just contact with me. There are always a couple of seconds more to bring to IABM, as I always tell to my news director.

Tomas Molina
Chief Meteorologist Televisió de Catalunya
Chairman IABM

MONTERREY 2007
The committee would welcome suggestions for the daily lecture topics for our next conference in Monterrey, Mexico probably being held in the last week of October 2007.

Please email secretary@iabm.org with your ideas.

The IABM only survives through the funds raised by subscriptions. Have you paid yours? You can do it on-line through our website at www.iabm.org
Trends and Technology in the Media – Weather Broadcasting in the next 20 years.

Gerald Fleming, Chairman of the WMO Expert Team on Media Issues

A paper delivered at the WMO Technical Conference on Public Weather Services at St Petersburg, Russian Federation, February 21st / 22nd 2005

The media moves at an ever faster pace, and those of us working in NMSs around the world who work directly with media organisations have to run fast to keep up. In this talk I will attempt something very brave and foolish; I will take my forecasting skills, heretofore applied exclusively to the atmosphere in the mid-latitudes, and focussed on no more than the upcoming ten days, and apply them to the crazy and volatile world of the media, focussing on not just ten weeks or even ten months, but on two whole decades!

My only reassurance is that I am unlikely to be back here in twenty years time to answer for the results of my predictions and to compare them with the evolved reality!

Nonetheless, to give a little background, so that you can assess my own perspective on this topic; I joined the Irish Met Service, or Met Éireann as it is now called, in 1980, so I have 25 years of work with an NMS to celebrate this year. I commenced regular television broadcasting with Radio Telefís Éireann, Ireland public service broadcaster, in 1985, so I have seen 20 years of development at first hand. I have seen what has happened in the past two decades; I will try to extrapolate forward as to what might happen in between now and 2025.

My ideas here are informed by the discussions I have had with many colleagues from around the world at meetings of the ET / Media Issues, and more particularly at a recent meeting on an Expert Team on Presentation Skills in Sweden last September, which I chaired. This meeting drafted a set of Guidelines on presentation skills, and in doing so confronted the changing world of communications technology. These Guidelines are at an advanced stage of editing, and should be published later this Spring.

We begin with television, still the pre-eminent medium of mass communication. When we look at weather broadcasting on television, we need to make four different geographical subdivisions;

1. The USA. This is the most developed market for weather broadcasting, with over half-a-century of practice and experience. It is characterised by the (almost) complete hand-over of responsibility for weather broadcasting to the private sector. Weather broadcasting is therefore driven primarily by the broadcast companies themselves, and has evolved its own set of standards (AMS / NWA Seal of Approval) and career structure. There are probably 400-500 people who do on-screen weather broadcasting in the USA (not all of them as a full-time job!); this may be comparable with the total number of television weather broadcasters in the rest of the world!

2. Europe. Twenty years ago all broadcasting in Europe was dominated by public-service media organisations such as the BBC, TVE, ZDF, RAI and so on. There is now a plethora of broadcasters, but public and private sector, and the availability of satellite means that anyone who puts a 1m dish on the side of their house can receive literally hundreds of channels (although whether you might actually want to watch most of them is an entirely different matter!). The public broadcasters have, by and large, retained their position as being strong (if not pre-eminent) in their own core markets, but their very raison-d'etre is constantly being challenged and their access to public funding, through licence fees or some similar scheme, may not last the next two decades. At the moment broadcasting in Europe is something of a free-for-all; indeed there are interesting parallels to be drawn in this regard between the business of broadcasting and the business of meteorology. The formation, strengthening and expansion of the EU has meant that this organisation now has a major role in shaping the future of both industries. However the language and cultural difference from one European country to another are also a significant factor and ensure that the model which operates in the US is not transferable across the Atlantic for application in the “Old World”.

3. Asia. I do not know a lot about the specific situation regarding broadcast meteorology in Asia, but it seems to me that it shares some characteristics with the US (private-sector led, entrepreneurial) but with much more strict government control. Certainly, when it comes to issues such as the “Single Official Voice” principal it seems that the structures exist in many Asian countries to ensure that this principal is carried through effectively.

4. Developing World. In the developing world the business of weather broadcasting is at a much earlier stage of development. The markets are small, the meteorology is frequently different; the languages vary; in these countries weather broadcasting is provided through the state agencies, or not at all. These countries need both access to the technology and know-how of the developed world and protection from the “globalisation” of weather information so that they can develop their own indigenous services and build them to a high level of quality to meet the specific needs of their own peoples.

In discussing the development (Continued on page 10)
Mention of globalisation above brings us to a key factor which will underlie the development of weather broadcasting over the coming decades. Broadcasting in the recent decades was largely through technical channels that had a limited reach. Thus, Swedish broadcasts, for example, were seen largely in Sweden, with a little overspill into neighbouring countries. There was a natural geographical (and cultural) region which the weather broadcast could focus on.

Now, a weather broadcaster is expected to cover the likely meteorological developments in a wider region; perhaps a whole continent; perhaps also a favoured holiday resort which may be on the other side of the world.

At the same time there is a focus on local knowledge; bringing the forecast information right down to the mesoscale. Twenty years ago the television forecast was concerned primarily with the forecast of national weather over a period of two or three upcoming days. Now the forecast may be continent wide in its scope, or even world-wide. On the other hand it may focus on a specific time and place; a forecast for a big football match, for example. The forecast may look at the upcoming hours in one minute, then go on to consider the week ahead. There is, therefore, been a multiplication of the scales of interest - both in time and in space – and this poses a very different challenge to the provider of weather information. We will come back to this point later, when we consider other new communications technologies. Key questions in television weather broadcasting are:

1. Will all television weather eventually devolve to the US model, or are there other solutions?
2. Will governments (through public sector broadcasters) continue to have an involvement?
3. What are the roles of the private sector vis-à-vis the public sector – both in broadcasting and in meteorology?

While Europe has a mix of public and private sector, it has seen an explosion in the number of available channels. The number of viewers is increasing at a far faster rate than the number of potential viewers (which may, in total, actually be going down). The implications are obvious; fewer viewers per channel. This, in turn, means less income per channel, which translates into lower resources for programme-making per channel. It all adds up to cheaper television – in every sense.

To some extent this lower cost/revenue is enabled by the fact that technology for broadcasting (cameras, sound desks, transmitters etc) has become more affordable, so the capital cost in setting up a broadcast station has decreased substantially. Fewer people are needed to operate this technology, so the running costs have also decreased. Unfortunately, in many cases, the production values (which really translate into the time available for researchers, designers, directors, presenters and producers to work through and optimise their ideas) have also been dropped down.

For providers of weather information, the landscape has changed drastically. From having, typically, one high quality (and high-value) client, the NMS (or private sector weather provider) must now deal with a multitude of low-value (and often low quality) clients.

Will this trend continue? Will there be a process of consolidation, whereby the weakest go under and a few strong businesses buy over these smaller stations, so that we end up with just three or four large players in the business? To some extent we can see this happening in European aviation, with “flag-carriers” merging completely or forming alliances so that they can successfully compete with the aggressive private-sector low cost operators. This may have to happen in broadcasting – and/or in meteorology.

I think the key point in Europe (and one which will eventually be faced by broadcasters in most developing countries) is whether society and politics will allow the retention of the licence fee to public-sector broadcasters.

The licence fee provides a financial “breathing space” and enables the public sector to offer quality – in reality to set the standards. I believe that the appreciation of the value of cultural difference between peoples, and the desire to maintain and even strengthen cultural diversity, while simultaneously moving towards political union, will inform governments in maintaining this lifeline to public sector broadcasters. The challenge for Met Services is then to forge alliances with these public sector broadcaster to match the quality of broadcasting with quality of forecast services; giving the public an overall high-class service in return for their licence fee and tax “Euro”.

The proliferation of channels has a consequence for the manner in which weather is presented in television. I think (and perhaps I would think this, as a weather presenter?) that not enough attention is paid (in Met Services, certainly) to the importance of the person who actually fronts the weather presentation. A forecast is, after all, an opinion; a statement of belief as to what will happen in the future. A forecast that the viewer does not have confidence in has no value. The presenter of the forecast must carry, to the viewer, a sense of trust, of knowledge, above all of credibility. The strength of the brand in the public mind is intimately bound up with their reaction (conscious and unconscious) to the person who presents the forecast. Met Services have to give more attention to this; some seem to think that a person who is a good forecaster is automatically the best person to present the forecast on television. This is a constant source of difficulty on the interface between and media and meteorology.

However the proliferation of television channels means that a different style of presentation is evolving (not just in
weather broadcasting, but in all broadcasting). Television channels now often remind me of five-year old children in school competing for the teacher’s attention; it’s about the person who shouts loudest and is the most insistant. With so many channels to choose from, and the remote control close at hand, presenters have to be able to grab the audience attention and hold it at all costs – which militates against the slower, more gentle, more thoughtful, intellectual style of presentation. Presenters now seem to fall into one of two categories; the outlandish and memorabie, or the drab and forgettable. Building a relationship of identity between a weather presenter and a viewer takes time, but these days’ people just don’t spend the time looking at one channel, and it is much more difficult to build that relationship of trust and credibility.

Writing recently in the IABM magazine, Up Front, the retired British weather broadcaster Bill Giles mused on the retirement of his colleague for many years, Michael Fish, who had chalked up 30 years as a weather broadcaster on BBC. In the Seventies and Eighties a small team of forecasters presented weather on BBC, which was one of two dominant channels in the UK. Thus, the weather broadcast team were readily recognisable to almost every British citizen, and carried a very strong brand image for both the BBC and the UK Met Office. In today’s fragmented market it is very difficult for their successors to achieve anything like the same level of personal connection with the viewer. “The times they are a-changing” as Bob Dylan sang (or is even his voice now being lost in the cacophony of hip-hop, rap, garage music etc?).

So, the key dilemmas of weather broadcasting come into focus. NMSs, through the excellence of the weather models which they have developed, and the tremendous increase in available imagery which they have promoted (satellite, radar, spherics etc) can now offer more and more weather products; products which are finely detailed in defining weather in both space and time. Furthermore, they can offer products of greater complexity, such as ensemble forecasts, which take time to understand and explain. While the expansion of broadcasting means many channels hungry for content, there are pressures for that content to be simple, accessible, and intellectually undemanding; driven by can shape society is the growth, and the manner of use, of mobile phones. It is a tremendous leap, conceptually, from dialling a number that connects you with a fixed location (where you hope the person to whom you wish to speak might be), to dialling a number that connects you with a specific person, no matter where in the world that person might be. The availability of this technology, and its spin-off uses such as text messaging, and now image messaging, enables new modes of behaviour, both in personal and in business life. (Not all of these might be ranked as improvements, however!).

An example of how developments in weather broadcasting come into focus. NMSs, through the excellence of the weather models which they have developed, and the tremendous increase in available imagery which they have promoted (satellite, radar, spherics etc) can now offer more and more weather products; products which are finely detailed in defining weather in both space and time. Furthermore, they can offer products of greater complexity, such as ensemble forecasts, which take time to understand and explain. While the expansion of broadcasting means many channels hungry for content, there are pressures for that content to be simple, accessible, and intellectually undemanding; driven by

(Continued on page 12)
(Continued from page 11)
- Everywhere
- All the time
- Immediately
- Cheaply
- With relevance

From a model where weather information was distributed “point to point” (one forecast office briefing one weather broadcaster who would present the same message to all the populace, or one forecaster directly briefing a person who had a specific decision to make) the model in the future must encompass a whole variety of formats; must be available on a multitude of platforms; must supply sufficient local detail to allow individuals to make relevant decisions; must be accessible round the clock; must be easily affordable.

The model will be one of a “pull” system whereby the user generates a request, and that request is answered quickly and relevantly.

How can an NMS possibly support all these diverse demands? The challenge is two-fold. The first challenge is to prepare a certain amount of “basic” forecast information which will be sufficient to respond to the great majority of user demands. This is already being done in most NMS’s, however in future it will need to be re-cycled, re-used and re-packaged through many different formats to make it easily available on platforms such as:

1. Mobile phones (text and graphics)
2. Personal Data Assistants (PDAs)
3. Mobile television
4. Mobile internet access

The second challenge is perhaps more demanding; it is to create a database of weather information, and then provide the structure whereby this can be interrogated by a user to provide them with exactly the information they require in time and in space, and with the necessary resolution and response time. This is the only logical way in which to provide specialised information in a cost-effective and time-effective manner. The WWIS and SWIC websites are a step in this direction, providing city forecasts and warnings of severe weather on a global scale; the idea needs to be scaled down to may be doing the most important job of all in the background, but in these competitive times every government service must justify its existence and its work, and this is surely made easier by the provision of high-quality services direct to the broad range of users – who are also the taxpayers. The flow of information in 21st century society is primarily controlled not by those who produce the information itself, but by those who direct the means of communication – in a word, the media. An NMS that stands aloof from engaging with the media, in all its forms, is allowing itself to become very vulnerable.

A Challenge for Met Services:

At almost every gathering of Met Service people, be it under the auspices of WMO or otherwise, you will hear criticism of the media. The criticism is often – indeed usually – justified. The Internet has been around for about a decade now and, uniquely, it offers organisations like Met Services the opportunity to become their broadcaster. If we ask how many NMSs have risen successfully to grasp that challenge, the answer has to be – very few.

Met Services contain within their ranks many of the skills and resources that might allow them to exploit the Internet to the full. They are a repository of high-quality information, which is in demand. They are comfortable with communications technology, as they must employ it in their core activities. What they frequently lack are the additional skills needed to take marry the information with the communications technology to create a quality service. Among the skills which are needed, and which are frequently foreign to Met Services, are:

§ Design skills
§ Creativity
§ Concepts of editorial responsibility and freedom

Presenting information in a visual format requires a high level of design awareness. How much can a person take in by looking at a computer screen? What colours work best for maps, diagrams, charts? What font looks best, and is easiest to read? These skills do not come naturally to those trained in mathematics and science. Similarly, while creativity is very important in all the sciences, including meteorology, it is necessarily constrained by the laws of science; the sort of creativity required to develop and market an innovative product or service is of a different type and order.

Most people from Met Services find the ideas of editorial control and responsibility difficult to come to terms with. An editor must, of necessity, be a kind of dictator, whose word is absolute law. An editor will make a decision on what they “feel” is right, and they will not usually be
We began this discussion by noting that the media moves at an ever-faster pace. Specific communications technologies will evolve and grow, but will in time be overtaken by even more advanced developments. The advent of fax was welcomed, but this technology is already looking rather dated, and will probably not survive more than another decade. A Met Service that wants to succeed in the delivery of quality products and services must focus, not on the technologies themselves, but on flexibility. It must put in place the people and the structures that allow each technological challenge to be turned into an opportunity. An NMS will need to be quick in responding to change; it will need to be creative in continually devising new products and services. The achievement of these goals will require putting in place significant resources – a problem for most Met Services that are already stretched to carry out their core tasks.

Many Met Services will look at these challenges, and the resources required to meet them, and will say “We cannot afford to go down this route” To which I would pose the question - If you want to survive as a Met Service, can you afford not to?!

Gerald Fleming

Spain’s Weather Proverbs month by month

Refranes Meteorológicos Españoles mes por mes

January – Enero

If freezing good in January, it will rain good in February. Si hiela bien en enero, bien lloverá en febrero.

Covered stars, storms and hail storms. Estrellas topadas, tempestades y pedregales.

February – Febrero

Sun of February, it lasts one day rarely. Sol de febrero, rara vez dura un día.

When it is not raining in February, there are not wheat and rye. Cuando no llovia en febrero, ni trigo ni centeno.

March – Marzo

Rains in March, weeds in the cornfields. Lluvias en marzo, hierbas en los sembrados.

When there are fogs in March, snowing or freezing in May. Cuando en marzo hay nieblas, mayo nieva o hiela.

April – Abril

When April ends raining, to May laughing. Abril que salie lluvioso, a mayo riendo.

If April is cold, there will be bread and wine. Si abril fuere frio, habrá pan y vino.

May – Mayo

Frost of May, water in hand. Helada de mayo, agua en la mano.

Too much hot in May increases the production. En mayo el mucho calor aumenta la producción.

June – Junio

Dry May, watered June; everything will come disturbed. Mayo seco, junio aguado; todo vendrá trastornado.

Good weather in June, secure summer. Buen tiempo en junio, verano seguro.

July – Julio

If there is not thunders in July; hunger in the village. Si en julio no truena, hambre en la aldea.

If it rains in July, snowing in winter. Si en julio llueva, en invierno nieva.

August – Agosto

First day of August, first day of winter. Primer dia de agosto, primer dia de invierno.

When it is raining in August, no rains water, it rains new wine. Cuando llueva en agosto, no llueve agua sino mosto.

September – Septiembre

End of September, the heat comes back again. Septiembre en fin de mes, el calor vuelve otra vez.

Good weather in September, better in December. Buen tiempo en septiembre, mejor en diciembre.

October – Octubre

If you feel cold in October, you give cover to your animals. Si en octubre sientas frio, a tus animales da abrigo.

For Saint Teresa, the clouds bring water to the animals. Por Santa Teresa, las nubes traen agua a las presas.

November – Noviembre

When November ends, the wind starts. Cuando noviembre acaba, el viento empieza.

From middle of November to forward, winter is constant. De mitad de noviembre en adelante, el invierno es constante.

December – Diciembre

Until Christmas day, it is not real winter. Hasta el día de Navidad, no es invierno de verdad.

After nebulous December, it arrives dusty January. Tras diciembre nebuloso, viene enero polvoroso.

The Editor would like to hear from members who have their own proverbs or weather sayings.
Towards a global accreditation process for weather broadcasters

The committee of the IABM, at its June meeting in Geneva, considered the structure which might underlie a world-wide accreditation scheme for weather broadcasters. They defined the following as essential features of such a scheme:

1. Each applicant for accreditation should be currently broadcasting (on television or on radio) and must submit a tape (or series of tapes) for assessment as part of the accreditation process.
 - The process should reward a high level of achievement in the field of broadcast meteorology; the bar for accreditation should be set fairly high so that the award is seen as having real value.

2. Each applicant would need to demonstrate a minimum level of meteorological knowledge before being accredited.
 - This could be through evidence of formal training at third level, through the accumulation of forecast experience working for a meteorological service provider, or through an alternative mechanism such as the submission of a paper on a relevant meteorological topic.

3. Accreditation would be valid for a three year period.
 - We are only as good as our last broadcast, and the accreditation process should be designed in such a way as to encourage those who have gained the award to maintain a high level of performance.

4. Renewal of the award of accreditation would be contingent on evidence of participation in some Continuing Professional Development (CPD) programme.
 - This could be through attendance at conferences, through the achievement of extra qualifications, through the publication of scientific papers of other articles, or through attendance at lectures organised or endorsed by the National Meteorological Society.

5. Accreditation would be organised within each country by the National Meteorological Society, who would set any relevant fees.
 - The IABM would not, as an organisation, have an operational role in the conduct of the accreditation scheme; this would be the responsibility of the National Meteorological Society, or a suitable body designated by them.

6. The accreditation committee who would assess applicants must include at least one member of the IABM or, in countries where this is not possible, a recognised broadcast meteorologist.
 - While there would be a significant degree of flexibility in the operation of the scheme from one country to another, the IABM would retain an involvement in, and oversight of, all the national schemes to ensure that a satisfactory minimum level was achieved by all those granted accreditation.

7. The Accreditation Certificate to be issued by the National Meteorological Society using an IABM template.
 - A standard form of certificate would be drawn up by the IABM and translated into different languages as appropriate. This certificate would incorporate the IABM logo, the logo of the issuing National Meteorological Society, and possibly also the logos of other organisations who might wish to be associated with the accreditation scheme.

8. The accreditation process to be internationally recognised.
 - Persons holding accreditation should possess evidence of a valuable and transferable skill which could be used in demonstrating a level of achievement to potential employers in other countries.

9. Applicants to have a commitment to follow the “Single Official Voice” principal, using the official warnings at times of severe weather.
 - The accreditation scheme might incorporate an ethical dimension, but should as a minimum imply a commitment, on the part of those gaining accreditation, to respect the “Single Official Voice” principle as enunciated by the World Meteorological Organisation.

10. Successful applicants to be termed an “Accredited Broadcast Meteorologist (ABM)”.
 - The style of the award should include a title which could be used after the name of the award-holder for on-air and other purposes. The award might also include the right to use a specific seal on documents and in other relevant media.

Your views and suggestions on these proposals would be appreciated - please email them to: secretary@iabm.org
JOHN ZILLMAN WINS 50th IMO PRIZE

GENEVA, 30 June 2005 (WMO) – During its fifty-seventh session (21 June – 1 July 2005), the Executive Council of the World Meteorological Organization (WMO) has awarded several scientists for their contribution to meteorology. Dr John Zillman from Australia won the prestigious IMO Prize for his visionary leadership in international meteorology.

Every year, WMO confers awards and prizes aimed at rewarding outstanding contributions to the advancement of meteorology and hydrology, as well as encouraging young scientists active in those fields.

The following was posted by Barry Myers of AccuWeather. It reflects the growing animosity between the US Met Service and the Private Sector over a widening responsibilities being sought through government by NOAA.

Review of the activities of the National Weather Service on Friday, June 10, 2005 points up two serious problems occurring with respect to the National Weather Service operations in providing information to the public, the media, and America’s weather industry, concerning Tropical Storm Arlene, as the storm entered the Gulf of Mexico from the Caribbean and had a strong northern movement towards the United States mainland.

NWS ISSUES MISTAKEN FINAL ADVISORY NOTICE.

At approximately 7:50a.m. EDT, the National Hurricane Centre declared that they had issued the last advisory on Tropical Storm Arlene. All watch, warning, and track graphics that had been on the National Weather Service website overnight were removed and were no longer available. The storm was actually intensifying.

At 8:20a.m. the National Weather Service then corrected this error and reinstated all of the tropical storm information as the strengthening storm moved north toward the Gulf Coast of the United States.

For a full half an hour people who may have visited the National Weather Service hurricane centre website were given the false impression that Tropical Storm Arlene was no longer a threat to air, sea or land. Visitors to the NHC web site were told, in essence, the storm no longer existed. Those people visiting private sector web sites relying on America’s weather industry knew this to be false.

The misconstruction was published at the very time when the storm was strengthening and the NWS knew of the strengthening but did not tell the public of the intensification in a timely way (see below).

NWS WITHHOLDS STORM INTENSIFICATION information from the public, THE MEDIA AND WEATHER COMPANIES for over three hours.

At 11:00a.m., Friday June 10, 2005, the National Hurricane Centre stated that Tropical Storm Arlene had strengthened while entering the Gulf of Mexico and could reach the U.S. coast as a minimal hurricane. In the 11:00a.m. discussion they cited a hurricane hunter aircraft Reconnaissance Report (Recon Report) from 7:30a.m. that showed a 64 knot (74mph) wind at flight level northeast of the centre. This previously undisclosed three and one half hour old Recon Report was the basis for increasing the storm’s intensity information in the 11:00a.m advisory and the basis for alerting the public and commercial interests, as those people, many blasted by Ivan just last year, scrambled to prepare for Arlene’s arrival.

The Recon Report from 7:30a.m. was not made available on the Weather Wire or on the National Weather Service internet sites. The Recon Report, although it had been available internally at the National Weather Service for at least 3½ hours, had never been disclosed to the public or to professional forecasters in America’s weather industry or to those in the media.

It appears that the National Weather Service both withheld this information from the public and took 3½ hours to reach its official government conclusion of storm intensification and to report it.

The public should not be disadvantaged by the inability of the government weather service to determine how to release this information in real time, its failure to quickly understand the information, or it’s withholding of it for any reason. Interestingly recent policy statements by the National Weather Service recognize agency problems in getting this data out, but there has been an effort by the agency to characterize these delays and managed news reports as “misunderstandings.”

Senate bill 786, currently pending before Congress, would prevent the government from withholding such information from the public. It would also require the NWS to focus more effort on the proper release of its data and warnings and improve on these critical efforts to protect life and help save property.

Barry Myers - AccuWeather
The organisation that represents all those involved in Broadcast Meteorology

The Current Association Committee

Chairman
Tomas Molina

Vice Chairman
Claire Martin

Secretary
Bill Giles OBE

Treasurer
Gerald Fleming

Publications
John Teather

Ordinary Member
Gemma Puig

Ordinary Member
Inge Niedek

Ordinary Member
Paul Gross

Ordinary Member
Dieter Walsh

Ordinary Member - Tammy Garrison

African Representative
Stephen Quoa

These are the current committee members of the Association. All of them are subject to re-election at the Annual General Meeting.

The IABM is an organisation that is run by volunteers who give their time freely to advance the profession of Broadcast Meteorology.

Do we have your latest work and home email addresses?
Just to be sure please email secretary@iabm.org

Now!

IABM CORPORATE MEMBERS

AccuWeather
ask - Innovative Visualisierungslösungen GmbH
CNN (Cable News Network)
Meteorlogix
MeteoMedia
SAM (Servicios Audiovisuales de Meteorologia)
The Weather Co.
The Weather People Ltd
Weather One
WSI (Weather Services International)

The Association is grateful to these companies for their continuing support.

The Editor is pleased to receive articles for publication in the magazine from whatever source.
Please email to secretary@iabm.org